The Control of High Throughput, Hethods The Control of High Throughput, Hetho

Jeffrey W. Gilman
Group Leader
Materials and Products Group
Fire Science Division

Combinatorial Methods Center

Home Fires

4,000 Deaths/Year
in US Home Fires - highest of
Developed Countries
37 % from Upholstered
Furniture Mattress and Bedding

Fire Statistics: National Fire Protection Assoc. 1996

3 minutes to flashover!

NIST Bunk bed Study: www.fire.nist.gov

General Flame Retardant Approaches for Polymers

I- Gas Phase Flame Retardants

- Reduce Heat of Combustion (ΔH_c) by scavenging reactive free radicals, resulting in incomplete combustion.
- Inherent Drawbacks: Negative Public Perception!

II- Endothermic Flame Retardants

- Function in Gas Phase and Condensed Phase
- Via endothermic release of H₂O, polymer cooled and gas phase diluted.
- Inherent Drawback: High loadings (30-50%) degrade mechanical properties.

III- Char Forming Flame Retardants

- Operate in Condensed Phase
- Provides thermal insulation for underlying polymer <u>and</u> a mass transport barrier, preventing or delaying escape of fuel into the gas phase.

Preparation of Polymer Claynanocomposites

polymer clay nanocomposite morphologies

PP-clay Nanocomposite: TEM

Gilman, et al, Chemistry of Materials; **2000**; *12*; 1866-1873

PP-clay Nanocomposite: Cone Calorimetry

Flammability of Polymer Clay Nanocomposites Consortium Manocomposites Consortium

~1997 - 2000

Year One Annual Report: Gilman, et al, NISTIR 6531

dant italiani. Terianism

Clay reinforced Carbonaceous Char

TEM

2.0 nm

Gilman et al, *SAMPE Journal*, 1997

Combustion

Reduced Flammability

with

Improved

Mechanical Properties

Vanocomposites using Paio-Silicas and PISSIII THES

MUSUMUSIC ISSUES

- > Nano-dispersion
- > Ammonium degradation
- Polymer degradation

Hoje Palorimeter Heat Release Rate Data

Imidazolium- Salts

PET/DMHDIM-MMT Nanocomposite

Parameter Space (~ 10⁶ Experiments) for Polymer Nanocomposites

Polymer	Nano- additive	Counter- Ion	Organic Treatment	Processing Conditions	Other additives	Flame Retardant
PE PP PS PA6 PU PVC PC PC PEO PMMA EVA	MMT Mica Hectorite Saponite Laponite silica	Na Ca Cu Fe	Alkylammonium Imidazolium Crown Ether Silated Carboxylate	Temperature Shear Residence time	Stabilizers Processing UV Antioxidant Fillers Pigments	Phosphate Halogenated Silicon Based
~ 10	~ 5	~ 5	~ 10	~ 10	~ 10	~ 10

*Hamis Throughput Hammability Wethods

Cumulative Earnings "Generic" Plastics Development Program

J. Busch, IBIS corp.

Microhotplates

Coat sensing film with test material

Correlate changes in power demand needed to maintain the specified heating rate with mass loss from degrading polymer

Microhotplate Sample Preparation

Microhotplate Flammability Screening

Microhotplate Sample Preparation

According to MicroFab Technologies, drop volumes as low as 20 pL can be dispensed.

Microhotplate Array (17 X 20)

High-throughput flammability screening on small (~ 1 µg) samples

Extrusion of Gradient Samples

Extruded sample with FR gradients

In-line sensors:

light scattering, FTIR, optical, NMR; or off line High Throughput, TGA, X-Ray Absorption System

Flux Gradient in HIIFT

Horizontal Ignition and Flammability Test

Gradient Flux Test

THIT

THIT

Different Critical Fluxes for Flame-Spread

PS/APP-PER

50 %

High Throughput Test

High Throughput Test

Conventional vs High Throughput Flammability Measurements

Method	Repeatibility (+/-)	Data-sets/day	Data Quality
UL 94 V	Poor (50%)	2-3	Qualitative
Cone	Excellent (5%)	2-3	Multi- parameter Highly Quantitative
HIFT using gradient samples	Excellent (5%)	100's	Quantitative

Conclusions

By combining nanotechnology with highthroughput experimentation, we can maximize the effect of additives and thereby provide industry with a powerful tool for the development of a new generation of high performance, low flammability materials.

Combinatorial Methods Center at NIST

New Consortium: High-Throughput Methods for Flammability

Team Project

will work with project teams, consisting of 3 or more companies, to develop generic tools for high-throughput formulation, characterization, and flammability performance screening of materials and fire retardant systems.

RESEARCH TEAM

Marc Nyden, Rick Davis, John Shields, Walid Awad,
Takashi Kashiwagi, Richard Harris, Lori Brassell, Kathy Butler, Michael Smith, Roy McLane
BFRL/NIST

David VanderHart, Atsuchi Asano MSEL/NIST

Doug L. Hunter Southern Clay Products Inc.

Thomas Sutto¹, Paul C. Trulove², and Hugh DeLong³

¹Naval Research Laboratory, Washington, DC

² Air Force Office of Scientific Research, Arlington, VA

³ Naval Academy, Annapolis, MD

Advanced Technology Program -Monitored by John Hewes and Felix Wu
FAA, Richard Lyon at William J. Hughes Technical Center (Interagency Agreement DTFA03-99-X-90009)
Air Force Office of Scientific Research (ISSA - AFOSR- ISSA-01-0001)

Materials and Products Group

Michael Smith, Richard Harris, Takashi Kashiwagi, Tom Ohlemiller, Marc Nyden Rick Davis, Kathy Butler, Greg Linteris, Lori Brassell, John Shields, Ruth Perkins, Wes Demory, David Wentz, Walid Awad,

